Author > Boban Mik$in
version > 1.0

4

Java for C# developers handbook

Table of Contents

Introduction
Framework

Development

Language
Types
Generics
LINO
Reflection
Serialization
Collections

Naming Convention

Exceptions and Exception Handling

Multithreading

Persistence
NuGet

Inversion of Control Container

Unit Testing
Web

Web Service

© Vega IT Sourcing

Page 2

7

Introduction

Java for C# developers handbook

Java for C# developers document describes the differences between the two
languages and how to easily make a transition from C# to Java without having any
prior knowledge about Java language or Java platform. Versions that are considered
here are .NET Framework 4.5 with C# 5.0 and Java 8.1.

For people who are familiar with Java fundamentals such as classes and types can
skip those parts and check the more advanced topic Multithreading.

This document is not describing every aspect of Java language, and its primary
intention is to introduce C# developers to the Java ecosystem quickly. The Android
platform will not be covered.

The same chapters will exclusively target Java language or platform, so there will be
no direct comparison between languages.

© Vega IT Sourcing Page 3

Framework

Both the .NET Framework and Java Platform are solving the same problems and
providing a similar set of rich features. However, there are many implementation
differences between them. One of the significant differences is portability, and Java
is well known for its possibility to run on a different OS where .NET is limited only to
the Windows (Mono and .NET Core are not considered here).

Java for C# developers handbook

.NET Framework can be seen as a compact piece of software with rich features for
building web, service, or desktop applications. Java, on the other hand, is organized
in a different way where some of the features are not provided out of the box, such
as Spring for web application development.

Here's the very brief feature comparison:

Feature

oS Windows Multiple

Runtime CLR JVM

Web Server Scripting ASP.NET WebForms JSF

Web Framework ASP.NET MVC Spring (add-on)

Data Access ADO.NET JDBC

ORM Entity Framework Hibernate (add-on)

As NET, Java also has the concept of an intermediate language which is called
bytecode. Generally, for every java file, Java compiler will create an equivalent .class
file with bytecode inside.

© Vega IT Sourcing Page 4

Java Platform

Java for C# developers handbook

People use the term Java when they want to refer to the JRE (Java Runtime
Environment) and/or Java SE (Java Standard Edition). Two products implement Java
Standard Edition specification, JRE and JDK (Java SE Development Kit). Depending
on the needs, one of those two should be used. JRE is required to run an application,
where for developing one, JDK is a must.

JavaFx

Java SE API

NEVER NS

Figure 1. Java platform

The above diagram is based on the Oracle implementation of Java specifications.

e Java SDK - Java Standard Development Kit used for creating Java
applications.

e JavaFX - Part of the standard JRE for building desktop and rich internet
applications (RIA).

e Java EE - Java Enterprise Edition presents a superset of the standard JRE for
building enterprise applications.

e Java ME - Java Micro Edition presents a subset of the standard JRE for
building embedded systems.

© Vega IT Sourcing Page 5

Besides Java that is provided by Oracle, there is another Java platform called Android
provided by Google. Although similar platforms, Android has some significant
differences in comparison to Java. Android will not be considered in this document.

Java for C# developers handbook

Development

IDE

In the .NET world, the most used development IDE is the Visual Studio where in Java
there are three common Eclipse, NetBeans and JetBrains IntelliJ. The most similar to
Visual Studio, feature equipped and preferred is the JetBrains Intelli].

Project

As in .NET, there are different project types in Java as well. Besides different project
types, there are a couple of different ways on how the project can be organized and
managed. In Visual Studio, a project can be seen as one assembly or executable
where the solution is used to logically group different projects. In Java, projects can
be perceived differently depending on an IDE or project type. Gradle type of project
supports the concept of project and subprojects. Seeing the project from the IntelliJ
perspective, a subproject will be referred to and named as a module where the
project is something equal to the Visual Studio project.

© Vega IT Sourcing Page 6

Java for C# developers handbook

Language

This section covers fundamental keywords and statements of C# programming
language and describes equivalents in Java programming language. For some parts
that do not exist in Java, certain alternatives will be provided.

Class

Precisely as in C#, class in Java presents one of the main programming building
blocks.

Only one class can be inherited.

To inherit a class, an extends keyword should be used.

Inherited class is usually referred to as extended or superclass.

There is no concept of static classes in Java.

Class is always treated as a reference type.

public class TypeResolver : BaseResolver
{
}

public class TypeResolver extends BaseResolver {

}

In Java, some classes are often called a bean. Essentially it means a class that follows
the JavaBean standard:

e Implements the Serializable interface.

e All properties are private and exposed with appropriate getters and setters.
e Has a public constructor with no parameters.

© Vega IT Sourcing Page 7

«\—%7

Constructor

Java for C# developers handbook

e Constructor, in both languages, behaves in the same way except the syntax
for chaining the constructors is different.

e Chaining of constructors in Java must be done from the constructor body as
opposite in CH#, where chaining is done in constructor definition.

e The super keyword is used for calling a constructor from the extended class
where this keyword is used for calling an overloaded constructor within the
same class.

public class BaseResolver

{
public BaseResolver(string name)
{
}
}
public class TypeResolver : BaseResolver
{
public TypeResolver()
: this("TypeResolver", 0)
{
}
public TypeResolver(string name, int type)
: base(name)
{
¥
}

© Vega IT Sourcing Page 8

Java for C# developers handbook

NEVE

public class BaseResolver {

public BaseResolver(String name) {
}

public class TypeResolver extends BaseResolver {
public TypeResolver() {

this("TypeResolver", 0);

public TypeResolver(String name, int type) {
super(name);

Besides constructor, Java has another concept called instance initializer. An instance
initializer is executed during the initialization of a class. One class can have multiple
instance initializers, and they are executed from top to bottom. Any instance
initializer is executed before a specific constructor gets called.

Java

public class TypeResolver {

private final String _name;
private final int _type;

{
}

_name = "TypeResolver";

public TypeResolver(int type) {
_type = type;
}

For the example above, a default constructor is not needed and as well, call to this()
from each constructor.

© Vega IT Sourcing Page 9

Java for C# developers handbook

Struct

Java has no structs. The most similar equivalence to it would be to create a class with
public fields or getters and setters.

NEVE

public class Address {

public String Street;
public String City;
public String Country;

Namespace

e Java has the concept of a package that is similar to the namespace in C#.

e Package in Java organizes physical files. Namespace in C# organizes the
program’s logical parts (classes, interfaces, etc.). Although Java itself is not
demanding that packages must reflect the folder structure, IDEs are the one
that forces such a rule to be applied.

e Package statement is optional, but if defined, it must be the first statement in
a java source file.

C#H#

namespace VegaIT.CSharp.Sandbox

public class TypeResolver
{
}

package com.vegait.java.sandbox

public class TypeResolver {

}

© Vega IT Sourcing Page 10

Java for C# developers handbook

Using

e Whatis using in C# it isimport in Java.

e A package member can be imported by specifying its fully qualified name.

e Multiple package members can be imported by specifying the package name
followed by an asterisk.

e Java also allows the static import of methods and constants (static fields). It
can be handy in case those members are accessed frequently.

using System;
using RX = System.Text.RegularExpressions;

namespace VegaIT.CSharp.Sandbox

{

public class TypeResolver

{
public void Register()

{
RX.Regex.Match("Vega IT Sourcing", "Vega");

}
}
}
IiHlHiII
package com.vegait.java.sandbox

import java.utils.*;
import static com.vegait.java.sandbox.Utilities.isVega;

public class TypeResolver {
public void Register(Class<?> type) {

isPrimitiveType(type);
}

© Vega IT Sourcing Page 11

7

Nesting

Java for C# developers handbook

Java does not allow package nesting. Although most of the IDEs represent packages
like they are nested, from the Java point of view, that is not the case.

W com.vegait.java.sandbox
w common
C Utilities
L ProducerConsumer

£" Main

Based on the example above, Java recognizes two independent packages
com.vegait.java.sandbox and com.vegait.java.sandbox.common. It can be argued
that there is not much of a difference in comparison to C#, but there is one big
difference, and it concerns access modifiers. More on that in the next chapter.

Method

Unlike in C#, all methods in Java are virtual by default, which means they can be
overridden.

public class BaseResolver

{
public void RegisterDefaultTypes()
{
}
public virtual void Register(Guid typeld, Type type)
{
}
}
public class TypeResolver : BaseResolver
{
public override void Register(Guid typeld, Type type)
{
base.Register(typeld, type);
}
}

© Vega IT Sourcing Page 12

+

Java for C# developers handbook

public class BaseResolver {

public void registerDefaultTypes() {
}

public void register(UUID typeId, Class<?> type) {
}
}

public class TypeResolver extends BaseResolver {

@Override
public void registerDefaultTypes() {
super.registerDefaultTypes();

}

@Override

public void register(UUID typeId, Class<?> type) {
super.register(typeld, type);

}

When the method is overridden, the calling of a super method is optional and
depends on the requirement. C# has a way to hide a non-virtual method from the
base class by using the new keyword.

Parameter

One of the key points to understand in Java is how parameters are passed. In short,
parameters are always passed by value. For primitive types such as int or boolean,
Java will make a copy of those values and pass them to a method that is being
called. Changing of values inside of the method will not change the values from the
caller scope. Objects, on the other hand, are reference types, but even objects are
passed by value. It means that Java will create a copy of a reference that points to
that object. However, Java will not make a copy of objects or primitives inside of that
object.

The same applies in C# except that C# has a way to pass a value as a reference by
using the out keyword. Java does not have such a concept, but there is a
workaround to the problem. The general rule would be to wrap a value into a class
and pass an instance of that class as a parameter. Changes made on the value will
be reflected from the caller.

© Vega IT Sourcing Page 13

+

C# has a way to pass the value type as a reference by using the ref or out_keyword.
More on that in the following chapters.

Java for C# developers handbook

ref

In Java parameters as passed by value, more details on that can be read in the
Parameter chapter. To change the primitive type from the calling method and have
that change reflected in the caller, it is usual in Java that the primitive value gets
wrapped in the class that will expose a method for updating the value.

public class CounterWrapper {
private int _value = 0;

public CounterWrapper(int value) {
_value = value;

}
public int getValue() { return _value; }

public void setValue(int value) { _value = value; }

}
public class TypeResolver {
private int _counter = 0;

public void register(UUID typeld, Class<?> type) {
CounterWrapper counter = new CounterWrapper(_counter);

incrementCounter(counter);

_counter = counter.getValue();

}

private static void incrementCounter(CounterWrapper counter) {
int newValue = counter.getValue() + 1;
counter.setValue(newValue);

Java already has wrapper classes implemented for primitive types, but those classes
are immutable and cannot be used in this scenario.

© Vega IT Sourcing Page 14

Java for C# developers handbook

out

In C#, it is required that the object gets instantiated from the caller method once the
parameter marked with the out keyword. There is nothing equivalent in Java.

Property

Java does not have properties. By having a setter and getter methods for a single
field is considered as property in Java.

public class Customer

{
public string FirstName { get; set; }

public string LastName { get; set; }

}

public class Customer {

private String _firstName;
private String _lastName;

public String getFirstName() {
return _firstName;

}

public void setFirstName(String firstName) {
_firstName = firstName;

}

public String getLastName() {
return _lastName;

}

public void setlLastName(String lastName) {
_lastName = lastName;

}

© Vega IT Sourcing Page 15

Java for C# developers handbook

Modifiers

Access Modifiers

The following table presents a map between modifiers against types. The first
column lists C# types, where the first row contains C# modifiers.

CH# public private internal protected protected

modifier/ty internal
pe

class N/A no modifier ' N/A

interface public N/A no modifier' | N/A N/A

field public private ° N/A N/A protected

method public private 2 N/A N/A protected *

There is one, not that clear rule which applies to packages, namely, in the previous
section namespace, it was stated that Java does not allow package nesting.

w [0 com.vegaitjava.sandbox
w [0 common
€ Utilities
£ ProducerConsumer
" Main

The Utilities package private members will not be visible from the
ProducerConsumer class and vice versa, package private members from the
ProducerConsumer class will not be visible from the Utilities class. From the C# point
of view, the com.vegait.java.sandbox can be seen as an assembly and the common
as a subfolder where every internal member from the Utilities class will be visible
from the ProducerConsumer class and vice versa.

" accessible within the same package
2 private members of an inner class are accessible to the outer class
3 accessible within derived classes and anywhere in the same package

© Vega IT Sourcing Page 16

Java for C# developers handbook

abstract

public abstract class BaseResolver

{

public abstract void Register(Guid typeld, Type type);

public class TypeResolver : BaseResolver

{
public override void Register(Guid typeld, Type type)

{
}
}
IiHHHII
public abstract class BaseResolver {

public abstract void register(UUID typeld, Class<?> type);
}

public class TypeResolver extends BaseResolver {

@Override

public void register(UUID typeId, Class<?> type) {
super.register(typeld, type);

}

© Vega IT Sourcing Page 17

Java for C# developers handbook

const

Not the exact equivalent exists in Java, but the closest one would be the use of static
and final keywords.

public const Guid DefaultType = new Guid("484D77F3-AD41-4506-9F00-911388B49972");

public static final UUID DefaultType =
UUID. fromString("484D77F3-AD41-4506-9F00-911388B49972");

delegate

Delegate as the method reference type in C# is also seen as a single method

interface. Equivalent to a single method interface in Java would be the functional
interface.

© Vega IT Sourcing Page 18

7

Java for C# developers handbook

event

Java doesn't have shorthanded syntax for events like C# does. There are two ways
how events can be implemented, one is using the Observable Pattern, and the
second is the functional interface.

public class TypeResolver

{
public delegate void TypeRegisterHandler(Guid typeld, Type type);

public event TypeRegisterHandler TypeRegistered;

public void Register(Guid typeld, Type type)

{
OnTypeRegistered(typeld, type);

private void OnTypeRegistered(Guid typeld, Type type)

{
if (TypeRegistered != null)
TypeRegistered(typeld, type);

class Program

{

static void Main()

{

TypeResolver typeResolver = new TypeResolver();
typeResolver.TypeRegistered += TypeResolverOnTypeRegistered;

private static void TypeResolverOnTypeRegistered(Guid typeld, Type type)

{
Console.WriteLine("TypeId: {@}; Type: {1}", typeld, type);

© Vega IT Sourcing Page 19

7

Java for C# developers handbook

Observable pattern implementation.

public interface TypeRegisterEvent {
void register(UUID typeld, Class<?> type);

}

public class TypeResolver {
private Set<TypeRegisterEvent> _listeners = new HashSet<>();

public void addTypeRegisterEventListener(TypeRegisterEvent listener) {
_listeners.add(listener);

}

public void register(UUID typeId, Class<?> type) {
for (TypeRegisterEvent listener : _listeners) {
listener.register(typeld, type);

}
}

public class Program implements TypeRegisterEvent {

public void run() {
TypeResolver typeResolver = new TypeResolver();
typeResolver.addTypeRegisterEventListener(this);

}

@Override
public void register(UUID typeId, Class<?> type) {
System.out.println("TypeId: " + typeld + "; Type:

+ type);
}

© Vega IT Sourcing Page 20

7

Functional Interface implementation.

Java for C# developers handbook

public class TypeResolver {

@FunctionalInterface
public interface TypeRegisterEvent {

void register(UUID typelId, Class<?> type);
}

private Set<TypeRegisterEvent> _listeners = new HashSet<>();

public void addTypeRegisterEventListener(TypeRegisterEvent listener) {
_listeners.add(listener);
}

public void register(UUID typeId, Class<?> type) {
for (TypeRegisterEvent listener : _listeners) {
listener.register(typeld, type);
}

}
public class Program {

public void run() {
TypeResolver typeResolver = new TypeResolver();
typeResolver.addTypeRegisterEventListener(this: :register);

}

public void register(UUID typeId, Class<?> type) {
System.out.println("TypeId: " + typeld + "; Type: " + type);
}

The significant difference is that the Program does not implement the
TypeRegisterEvent interface but instead utilizes lambda expressions and method

references. More details on the function interface can be found in the Functional
interface chapter.

override
See Method chapter.

© Vega IT Sourcing Page 21

Java for C# developers handbook

virtual
See Method chapter.

sealed

e For classes, the equivalent in Java is final.
e For C# sealed virtual methods, the equivalent in Java is final. In Java, a
method is overridable by default unless marked with the final.

public class Base

{
protected virtual void Foo() { }

public sealed class TypeResolver : Base

{

sealed protected override void Foo() { }

}

public class Base {
protected void Foo() {
}

}
public final class TypeResolver extends Base {

@0verride
protected final void Foo() {
}

© Vega IT Sourcing Page 22

Java for C# developers handbook

readonly

e Forfields, the equivalent in Java is final.
e A variablein Java can also be marked as final.

public class TypeResolver

{
private readonly int _foo = 10;
public readonly int Bar = 20;

public class TypeResolver {

private final int _foo = 10;
public final int Bar = 20;

© Vega IT Sourcing Page 23

Java for C# developers handbook

static

e Classes in Java cannot be declared as static unless the class is nested.
e Java doesn't support static constructors, but there is an alternative using the
class initializer.

public static class TypeResolver

{
private static int _foo = 10;
private static int _bar;

static TypeResolver()

{
_bar = 20;

public static void Register(Guid typeld, Type type)

{
}
}
public final class TypeResolver {

private static int _foo = 10;
public static int _bar;

static {
_bar = 20;
¥
private TypeResolver() {
¥
¥
volatile

More on the impact and whether it should be used can be read in the volatile
chapter.

© Vega IT Sourcing Page 24

Java for C# developers handbook

using

The concept in Java is called try-with-resources, which uses a slightly modified try
statement. For resources to be automatically disposed at the end of the try block
statement, it has to implement AutoCloseable or Closeable interface. More on that
can be read in the |Disposable chapter.

Catch and finally blocks are optional.

using (SqlConnection connectionl = new SqlConnection())
using (SqlConnection connection2 = new SqlConnection())

{

// perform some work

try (SqlConnection connectionl = new SqlConnection();
SgqlConnection connection2 = new SqlConnection()) {
// perform some work

Throwing an exception from the try block is suppressing the exceptions thrown from
the close method. More on exceptions and suppressed exceptions can be read in
Exceptions and Exception Handling chapter.

© Vega IT Sourcing Page 25

+

IDisposable

Java for C# developers handbook

Java, just like .NET, has a garbage collector (GC), which is responsible for automatic
freeing up of memory from unused objects. Typically most of the objects are
automatically picked by the GC, where for particular objects, it has to be explicitly
defined when they should be destroyed. The notion of removing an unused object in
.NET is called disposing, whereas in Java is called closing.

Two interfaces can be implemented for explicit resource closing, Closeable, or
AutoCloseable. The Closeable throws IOException, where AutoCloseable throws
Exception. In most cases, when there are no explicit I/O operations, the
AutoCloseable interface is more suitable to implement.

public class TypeResolver : IDisposable

{
public void Dispose()
{
}

¥

public class TypeResolver implements AutoCloseable {

@Override
public void close() {
}

Java does not support destructors and does not have a way to suppress the garbage
collector finalize like in C#. There is a finalize method, though, that can be
overridden. The finalize method gets called on an object by the JVM once it
determines that there are no references to that object. When working with
unmanaged resources such as explicit I/O transactions, it makes sense to override
the finalize method and do the cleanup of those unmanaged resources.

© Vega IT Sourcing Page 26

Types

Java for C# developers handbook

The concept of types is similar in both languages, but there are some minor and
some significant differences when it comes to usage and implementation.

Primitive Types

Primitive types are almost the same, with few exceptions. Java does not recognize
unsigned types, as CH# does. In C#, we can define a number by using either int or
Int32, where Int32 is just a synonym in Java; however, int is treated as value type
where Integer as its equivalent is a class or reference type. Those equivalent classes
are also called wrapper classes, and basically, they operate by boxing a value type.
Since the wrapper class is a reference type, it can be presented as a null value, so it is
essential not to mix int with Integer types together when writing the code.

The following table presents the map between primitive types.

C# (type/alias) Java (type/wrapper)

bool / System.Boolean boolean / java.lang.Boolean
byte / System.Byte byte / java.lang.Byte

short / System.Int16 short /java.lang.Short

int / System.Int32 int /java.lang.Integer

long / System.Int64 long /java.lang.Long

float / System.Single float / java.lang.Float

double / System.Double double /java.lang.Double

char / System.Char character / java.lang.Character

Although not a primitive type per definition, the decimal is another type that exists
in both languages. It maps to java.math.BigDecimal wrapper class.

© Vega IT Sourcing Page 27

Java for C# developers handbook

Reference Types

These types in Java are based on a specific class. It means that the reference type
variable holds the address of an object where the value type contains the actual
value.

The following table presents the map between some reference types.

C# (type/alias) Java (type/wrapper)
object / System.Object N/A /java.lang.Object
string / System.String N/A /java.lang.String
N/A / System.DateTime N/A /java.lang.Date
N/A / System.Guid N/A /java.lang.UuUID

© Vega IT Sourcing Page 28

Java for C# developers handbook

Enumeration Types

The enum type is implicitly inheriting System. Enum class or java.lang.Enum class in
Java. Unlike in C#, Java does not have a notion of an underlying type. Instead, enum
type in Java is more similar to a standard class, which gives more flexibility in the
end.

public enum VersionStatus
{
Edit,
ToBeApproved,
Released,
Archived,
Rejected,
Revoked,
Deleted

}

public enum VersionStatus {

Edit(9),
ToBeApproved(1),
Released(2),
Archived(3),
Rejected(4),

Revoked(5),

Deleted(6);

private final int value;

VersionStatus(int value) {
this.value = value;

}

public int getValue() {
return this.value;

}

© Vega IT Sourcing Page 29

Java for C# developers handbook

Comparing Values

One of the significant differences in Java is value comparison. In C#, it is common to
use == operator, even though the usage of the Equals method is recommended. In
most cases == will behave as expected. In Java, the == operator in most cases will
produce different results; thus, it is recommended to use the equals method
whenever possible instead of the == operator. The golden rule is to use the equals
method for every non-primitive type value comparison.

Java

String vall
String val2
String val3
String val4d

"Java";
"Java";

new String("Java");
new String("Java");

vall == val2 // TRUE
val3 == val4 // FALSE
val2 == val3 // FALSE

val3.equals(vald) // TRUE

String comparison is more difficult to grasp due to a JVM optimization, which
replaces the same literals with the same reference object, thus making it appear
that == operator works.

Besides the String type, there are specific comparison rules with the wrapper classes
mentioned in the primitive types chapter.

Java

Integer x1 = 100;
Integer yl = 100;
Integer x2 = 200;
Integer y2 = 200;

x1 ==yl // TRUE
x1.equals(yl) // TRUE

x2 == y2 // FALSE
x2.equals(y2) // TRUE

© Vega IT Sourcing Page 30

Java for C# developers handbook

In this example, comparison outcome depends on the value range, again due to a
JVM optimization.

For certain types and value ranges, the same wrapper class instance is returned.

Type Range

byte from -128 to 127
short from -128 to 127

int from -128 to 127
char from u0000 to uOOff
boolean true, false

Operators overloading in Java is not supported.

© Vega IT Sourcing Page 31

Java for C# developers handbook

Nested Types

Although both languages support nested classes, Java, by default, promotes access
to all outer class members from the non-static inner class.

public class Outer
{
private string _value = "Vega";
private class Inner
{
private readonly Outer _outer;
public Inner(Outer outer)
{
_outer = outer;
}
public void ExecuteInner()
{
Console.WriteLine(_outer._value);
}
}
public void Execute()
{
var inner = new Inner(this);
inner.ExecuteInner();
}
}
var outer = new Outer();
var inner = new Outer.Inner(outer);

© Vega IT Sourcing Page 32

Java for C# developers handbook

NEVE

public class Outer {
private String value = "Vega";

class Inner {
void ExecuteInner() {
System.out.println(value);
}

}

void Execute() {
Inner inner = new Inner();
inner.ExecuteInner();

Outer outer = new Outer();
Outer.Inner inner = outer.new Inner();

Particular types of inner classes in Java are called local classes and anonymous
classes and both are described in the anonymous type chapter.

© Vega IT Sourcing Page 33

Java for C# developers handbook

Anonymous Type

Java does not have a direct equivalent for the anonymous type like C# does. A
similar result can be achieved with the local class.

var val = new { Number = 1, Text = "Vega" };

Console.WriteLine(val.Number);
Console.WriteLine(val.Text);

NEVE

public static void main(String [] args) {

class Anonymous {
int number = 1;
String text = "Vega";
}

Anonymous val = new Anonymous();

System.out.println(val.number);
System.out.println(val.text);

Anonymous classes in Java are like local classes but without names. They allow us to
declare and instantiate a class at the same time.

Java

public interface TypeResolver {

void Execute ();

}
TypeResolver typeResolver = new TypeResolver () {
public void Execute () {

}
b

typeResolver.Execute () ;

Anonymous class definition is an expression; thus, it must be part of a statement.

© Vega IT Sourcing Page 34

Java for C# developers handbook

Interface

Interface, in a nutshell, is the same in both languages. However, Java has some
additional features that do not exist in C# as such.

public interface ITypeResolver

{

void Execute();

NEVE

public interface TypeResolver ({

String Company = "VegalIT";

void Execute ();

Apart from abstract methods, an interface in Java can have constant declarations.

More on the naming interfaces can be read in the naming convention chapter.

Functional interface

Functional interface is more like a convention where it is considered that a
functional interface is the one that has only one abstract method defined. Usually,
those types of interfaces are annotated with @Functionalinterface. They typically are
not explicitly implemented but created using the lambda expressions. If the
interface is not explicitly annotated with the @Functionalinterface annotation, but it
meets the definition of a functional interface, it will be considered as such by the
compiler.

@FunctionalInterface
public interface TypeResolver ({

void Execute ();

© Vega IT Sourcing Page 35

Java for C# developers handbook

This type of interface looks similar to the anonymous class, but the anonymous class
is not bound to a single abstract method definition.

Default method

Default method is a unique feature that does not exist in C#. It allows an interface to
implement a method. The main benefit of using the default method is binary
compatibility, where implementations that are using an old version of the interface
will still be compliant, even without recompilation.

Java

public interface TypeResolver ({

default void Sync () {
// some default implementation here

}

The default method is not required to be implemented, but it can be redeclared,
which makes it an abstract method or redefine it, which overrides it.

Static method

Static method is another unique feature. It allows an interface to declare a static
method that is shared with the rest of the static methods of a class that implements
the interface.

Java

public interface TypeResolver ({

static long Recalculate (long x) {
// some recalculation logic here

}

© Vega IT Sourcing Page 36

Java for C# developers handbook

Lambda expression

Lambdas are similar in both languages. In Java, a lambda can be seen as a
shorthanded way of implementing the functional interface.

public static void Print(List<Customer> customers, Func<Customer, bool> tester) {
foreach (Customer customer in customers) {
if (tester(customer)) {
Console.WriteLine(customer.Name);

}
}

Print(customers, customer => customer.Name.EndsWith("Doe"));

Java

public static void print (List<Customer> customers, Predicate<Customer>
tester) {
for (Customer customer : customers) {
if (tester.test (customer)) {
System.out.println (customer.getName ()) ;

}

print (customers, customer -> customer.getName () .endsWith ("Doe")) ;

In both languages, lambdas are the way to represent code as data, so in essence,
they represent concrete objects. In C#, most of the lambdas correspond to Action
and Func delegate types, wherein Java those types can be found in the
Jjava.util.function package.

© Vega IT Sourcing Page 37

Java for C# developers handbook

Method group

Lambda expressions can be written in the shorter form if the conditions are met.
That form in C# is called method group wherein Java it is called method reference.

private static bool EndsWithDoe(Customer customer)

{

return customer.Name.EndsWith("Doe");

}

Print(customers, EndsWithDoe);

Java

public class Customer {

public static boolean endsWithDoe (Customer customer) {
return customer.getName () .endsWith ("Doe") ;
}
}

print (customers, Customer::endsWithDoe) ;

© Vega IT Sourcing Page 38

Java for C# developers handbook

Attribute

Attribute in Java is called annotation. The annotation type is interface as opposed to
attribute in C# that is of class type. In Java, it is possible to use annotation on
annotation.

[AttributeUsage(AttributeTargets.Class, Inherited = true, AllowMultiple = false)]
public class TypeIdAttribute : Attribute

{
public TypeIdAttribute(string id)

{
}

public Guid Id { get; private set; }

}

@Retention (RetentionPolicy.RUNTIME)
@Target (ElementType. TYPE)
public @interface EntityTypeld ({

String value();

The @ symbol denotes that the interface is of annotation type.

© Vega IT Sourcing Page 39

Java for C# developers handbook

Generics

Generics in both languages are implemented with the same intention, specifying a
generic type without knowing the actual type at the compile time. Java supports
only derivation constraints.

public abstract class Message<T>
where T : Header

{
protected Message(T header)
{
Header = header;
}

public T Header { get; private set; }

}

public abstract class Message<T extends Header> {

private final Class<? extends Header> _headerType;

protected <T extends Header> Message (Class<T> headerType) {
_headerType = headerType;
}

public final <T extends Header> Class<? extends Header> getHeaderType () {
return _headerType;

}

Implementation of generics is a bit different in Java, where generic type information
is not available in the runtime. That is called type erasure, which doesn'’t allow read
of such information using reflection. In cases where generic type information is
required at runtime, it has to be explicitly saved, generally in some internal class field.

© Vega IT Sourcing Page 40

Java for C# developers handbook

Covariance and contravariance

Another difference is covariance and contravariance and where they are specified. In

C#, they are specified at the definition-site, wherein Java they are specified at the
use-site.

List<Integer> listl = new ArraylList<Integer>();

List<?> list2 = new Arraylist<Integer>();

List<? extends Number> 1list3 = new ArrayList<Integer>();
List<? super Integer> list4 = new ArrayList<Number> () ;

© Vega IT Sourcing Page 41

Java for C# developers handbook

LINQ

Stream in Java is the closest match to the generic query language that exists in C#.
The stream method can be invoked on all objects that implement the Collection
interface.

List<string> does = customers
.Where(c => c.Name.EndsWith("Doe"))
.Select(c => c.Name)
.TolList();

List<String> does = customers
.stream/()
.filter(c -> c.getName () .endsWith ("Doe"))
.map(c -> c.getName ())
.collect (Collectors.toList());

Some of the stream methods, such as findFirst, which is equivalent to the First
method in C#, return Optional<T>.

Reusing an already created and called stream results in an lllegalStateException.

Expression trees are not supported in Java.

© Vega IT Sourcing Page 42

Java for C# developers handbook

Reflection

Java supports reflection at certain extent as C# does.

PropertyInfo propertyInfo = typeof(Customer).GetProperty("Name");
propertyInfo.SetValue(customer, "Doe");

Method method = Customer.class.getDeclaredMethod ("setName", String.class);
method.setAccessible (true) ;
method.invoke (customer, "Doe");

Reading information about generic types and method parameters is not supported.
Java implements so-called type erasure, so to have information available in the
runtime, it is required that such information gets explicitly stored.

© Vega IT Sourcing Page 43

%,’!

Serialization

Java for C# developers handbook

Java supports binary serialization out of the box.

[Serializable]
public class Entity

{

private readonly string _name;

[NonSerialized]
private readonly string _secret;

public Entity(string name, string secret)

{
_name = name;
_secret = secret;
}
public override string ToString()
{
return String.Format("Name: '{@}'; Secret: '{1}'", _name, _secret);
}
}
using (Stream stream = File.Create("entity.bin"))
{
BinaryFormatter formatter = new BinaryFormatter();
formatter.Serialize(stream, new Entity("Doe", "a"));
}
using (Stream stream = File.OpenRead("entity.bin"))
{
BinaryFormatter formatter = new BinaryFormatter();
Entity entity = (Entity) formatter.Deserialize(stream);
}

© Vega IT Sourcing Page 44

7

Java for C# developers handbook

public class Customer implements Serializable {

private static final long serialVersionUID = 7526472295622776147L;

private String name;
transient private String secret;
public Customer (String name, String secret) ({

this.name = name;
this.secret = secret;

@Override
public String toString() {

return String.format("Name: '%s'; Secret: %s", name, secret);

FileOutputStream output = new FileOutputStream("entity.ser");
ObjectOutputStream serializer = new ObjectOutputStream(output) ;
serializer.writeObject (new Customer ("Doe", "a"));
serializer.flush{();

FileInputStream input = new FileInputStream("entity.ser");
ObjectInputStream deserializer = new ObjectInputStream (input) ;
Customer customer = (Customer)deserializer.readObject ()

Fields that are marked with the transient keyword are ignored during serialization.
As part of the best practice, it is recommended to always include a serialVersionUID

field for the sake of compatibility and security.

JSON serialization is not supported, but few popular libraries are used, such as

Jackson (also supports other formats such as XML) and Gson.

XML serialization is also supported out of the box by using either JAXB (Java

Architecture for XML Binding) or XMLEncoder/XMLDecoder classes.

© Vega IT Sourcing

Page 45

https://github.com/FasterXML/jackson
https://github.com/google/gson

Java for C# developers handbook

Collections

C# and Java are quite similar in the set of data structures that they provide.

The closest equivalent of IEnumerable<T> in Java is Iterator<E>. However, in Java,
Iterator supports item removing that is not possible in C#. Unlike in C#, LINO

expressions can be called on the IEnumerable type and its descendants wherein
Java, the stream function, is available for the Collection type and its descendants.

Table with commonly used types and their equivalents:

C# NENVE]

List<T> ArrayList<E>
HashSet<T> HashSet<E>
Dictionary<TKey, TValue> HashMap<K, V>

© Vega IT Sourcing Page 46

%,’!

Naming Convention

Java for C# developers handbook

Package name provides typically the name of the organization followed by the
project-specific details, usually reversed domain name (e.g., com.vegait.java).

Method names follow the camelCase notation.

Interfaces are not prefixed with [just like in C# and instead looks like a standard
class in C#. A single class that implements an interface is typically suffixed with Impl.

NEVE

public interface TypeResolver ({
void execute();

}

public class TypeResolverImpl implements TypeResolver {
@Override
public void execute() {
}

There are two official documents on the naming convention provided by Oracle and
Google.

© Vega IT Sourcing Page 47

https://www.oracle.com/technetwork/java/codeconventions-135099.html
https://google.github.io/styleguide/javaguide.html

+

Exceptions and Exception Handling

Java compiler recognizes two types of exceptions, checked and unchecked. Java VM
treats all exceptions as unchecked exceptions. The compiler checks checked
exceptions, and the developer must handle them, and there are two ways for that.
The first is to define it using the throws keyword, and the second is to catch it
without rethrowing it.

Java for C# developers handbook

public Object readResolve() throws ObjectStreamException {
return valueOf(ordinal());

}

public Object readResolve() {

try {
return valueOf(ordinal());

} catch (ObjectStreamException ex) {
throw new RuntimeException(ex);

}

In case of using the throws keyword, a caller of the method would have to handle it.
When wrapping an exception in RuntimeException, a caller would not be aware of
such RuntimeException without looking into the source code.

Unchecked exceptions are based on either Error or RuntimeException classes. Every
other exception is considered to be a checked exception. Exceptions in C# are
equivalent to unchecked exceptions in Java. There is no concept of checked
exceptions in C#.

According to the official Java documentation, catching a checked exception and
throwing it as RuntimeException is not recommended. There is still debate in favor
of both approaches, and none of them are exclusive. By looking at the most popular
libraries such as Spring, Hibernate, AWS SDK, there is a tendency to lean more
towards converting checked exceptions into RuntimeException exceptions.

Any exception thrown from the finally block will discard any exception thrown from
the try and catch block.

© Vega IT Sourcing Page 48

«\—%7

Multithreading

Java for C# developers handbook

Thread

There are different ways in both languages how the program can fire up a thread. In
C#, a thread can execute a delegate or anything that applies to the delegate
signature. In contrast, a Java thread can execute any class that implements a
Runnable interface or anything applicable to that interface such, as a method
without input parameters.

public void Execute()

Thread thread = new Thread(Execute);
thread.Start();

public void execute() {

}

Thread thread = new Thread(this::execute);
thread.start();

This is also called a runnable pattern. Besides the start method, there is also a run
method, but that method should never be called because it defuses the purpose of
executing the code in a separate thread. By calling the run method, a target
(Runnable) will be executed synchronously from the calling thread. In both
languages, the thread does not return anything.

Thread class in Java can be inherited where in C# Thread class is sealed. It is strongly
discouraged to inherit Thread class.

Foreground vs. Background

By default in C#, any thread created is treated as the foreground thread, which
means that the main thread will wait for its execution to finish to shut down

© Vega IT Sourcing Page 49

Java for C# developers handbook

completely. In Java, foreground threads are called user threads, and they behave in
the same way as to foreground threads in C#. Background threads are quite the
opposite from the foreground threads and will be automatically terminated upon
the primary thread completion. Those background threads are called daemon
threads in Java. Daemon threads have lower priority over the user threads which, is
not the case in C#, where both have the same priority unless the priority is explicitly
set to a different priority.

Thread thread = new Thread(Execute);
thread.IsBackground = true;

thread.Start();

Thread thread = new Thread(this::execute);
thread.setDaemon(true);

thread.start();

Join

Both languages have the same syntax when it comes to blocking a thread.

Thread thread = new Thread(Execute);
thread.Start();

thread.Join();

Thread thread = new Thread(this::execute);
thread.start();

thread.join();

© Vega IT Sourcing Page 50

+

By calling the join method, it will block the calling thread from further execution
until the thread for which the join was called finishes its execution.

Java for C# developers handbook

Abort

In both languages, it is considered as bad practice to stop a thread forcibly. Although
API for doing so is still available, and it is still inadequate, unreliable, and
unpredictable. The recommended approach is to implement a stopping mechanism
inside of a thread and allowing mechanism to be called from outside of the thread.

Exception Handling

In C#, any unhandled (uncaught) exception that was thrown from a thread will
cause the process to stop. In Java, an uncaught exception that was thrown from a
thread will only bring down that thread where the JVM will continue to work.

There are several ways in Java how uncaught exceptions that are thrown from a
thread can be handled:

by setting an uncaught exception handler on an individual thread,

Thread thread = new Thread(Main::execute);
thread.setUncaughtExceptionHandler(Main: : ThreadExceptionHandler);

by setting a default (global) uncaught exception handler.

Thread.setDefaultUncaughtExceptionHandler(Main: : ThreadExceptionHandler);

In case of an uncaught exception, the JVM will first check if the uncaught exception
handler is defined on an individual thread and call it if it is, otherwise it will look for
the global uncaught exception handler. In case a thread belongs to a group, the
uncaught exception handler of that group will be called.

More on exceptions and how they should be handled in general can be read in
Exceptions and Exception Handling chapter.

© Vega IT Sourcing Page 51

Java for C# developers handbook

Group

The concept of the thread group as such only exists in Java, and it is mainly
introduced to manage several threads of a similar type easily.

ThreadGroup threadGroup = new ThreadGroup ("A");
Thread thread = new Thread(threadGroup, Main::execute);

ThreadPool

The closest implementation in Java, similar to the ThreadPool in C#, would be the
ExecutorService. However, the ExecutorService provides much more functionality
and control over threads, which is more similar to the Task in C#. ThreadPool in C#
can be seen as a subset of Java ExecutorService.

public void Execute(object state)

{
}

ThreadPool.QueueUserWorkItem(Execute);

Java

public void execute() {

}

ExecutorService executorService = Executors.newSingleThreadExecutor();
executorService.execute(Main: :execute);
executorService.shutdown();

This is also called an executor pattern. In this example, ExecutorService will create
only one thread and use it to execute any runnable that is passed through the
execute method. If there are no more tasks to be executed, that single thread will
still stay alive until the shutdown method gets called. There are two more ways how
ExecutorService can be shut down, shutdownNow which will stop any executing
task and shutdown and awaitTermination, which will wait for a specified time for
tasks to complete.

© Vega IT Sourcing Page 52

+

For threads to be created on-demand Executors.newCachedThreadPool factory
method should be used.

Java for C# developers handbook

Any thread that is created by the ExecutorService is a user thread. There are many
other ways of how ExecutorService can be configured. The big difference is that
multiple instances of differently configured ExecutorService can exist, which is not
the case in C#, where ThreadPool is a static class and allows minimal configuration.

ThreadPool, just like the thread, does not provide return value from a thread
execution. The same is with the ExecutorService using the Runnable interface. Also,
an exception that is raised from the Runnable will not be propagated, and there is
no way to tell when the task completed. However, ExecutorService provides
additional methods for which return value can be specified. More on that can be
found in the Task chapter.

Exception Handling

As with regular threads, handling of exceptions in C# must be done within the
thread itself.

By using the ExecutorService in combination with the Runnable, the only way to tell
whether there was an exception is to implement the
Thread.UnchaughtExceptionHandler, just like it is described in the Thread Exception

Handling chapter.

Important is that the ExecutorService shutdowns at the end.

public void execute() {

}

ExecutorService executorService = Executors.newSingleThreadExecutor();

try {
executorService.execute(Main: :execute);

} finally {
executorService.shutdown();

}

© Vega IT Sourcing Page 53

%,’!

Task

Task presents a higher level of abstraction over the thread. It gives much more
configurable and powerful abilities when it comes to parallel execution. TPL (Task
Parallel Library) does not have an exact and single equivalent in Java. Several
implementations can be used to achieve what TPL provides. Not every aspect of the
TPL will be covered here, only some basic ones.

public static int Execute()

{

Java for C# developers handbook

return 0;

Task<int> task = Task<int>.Factory.StartNew(Execute);
Console.WriteLine("Task Result {@}", task.Result);

NEVE

public static Integer execute() {
return 0;

}

ExecutorService executorService = Executors.newSingleThreadExecutor();
Future<Integer> task = executorService.submit(Main::execute);
System.out.println("Task result " + task.get());

In this case, Main::execute is implicitly converted to Callable<Integer> type, which is
equivalent to Func<int> type in C#. By calling the get method, it will block the
current execution until the results are provided, similar to what the join method of
Thread class is doing. Although the Future provides more control over Thread, still it
not fully compatible with Task in C#.

© Vega IT Sourcing Page 54

«\—%7

The closest implementation of Task in Java is CompletableFuture, which provides a
model for continuation and synchronization.

List<Task> tasks = new List<Task>();

Java for C# developers handbook

Task taskl = Task.Factory.StartNew(Execute);
taskl.ContinueWith(
t => Console.WritelLine("Task {@} exceptions {1}", t.Id,
String.Join(";", t.Exception.Flatten().InnerExceptions.Select(e =>
e.Message))),

TaskContinuationOptions.OnlyOnFaulted);
Task task2 = Task.Factory.StartNew(Execute);

tasks.Add(taskl);
tasks.Add(task2);

Task.Factory.ContinueWhenAll(tasks.ToArray(),
completed."));

Java

List<CompletableFuture> tasks = new ArrayList<>();

=> Console.WritelLine("Tasks

CompletableFuture taskl = CompletableFuture.runAsync(Main::execute)
.exceptionally((e) -> {
System.out.println("Task exception" + e.getMessage());
return null;

})s

CompletableFuture task2 = CompletableFuture.runAsync(Main::execute);

tasks.add(taskl);
tasks.add(task2);

CompletableFuture.allOf(tasks.toArray(new CompletableFuture[0]))
.thenRun(() -> System.out.println("Tasks completed"));

There are many more options and ways of how tasks can be invoked and
synchronized in parallel, which can be found online and which will not be covered
further in this document.

© Vega IT Sourcing Page 55

Java for C# developers handbook

Exception Handling

Unlike the exception handling, using the Runnable interface Future and
CompletableFuture offer a more convenient way of handling the exceptions.

public static void Execute()

{
}

Task task = Task.Factory.StartNew(Execute);

try
{
task.Wait();
}
catch (AggregateException ex)
{

Console.WriteLine("Task exceptions {0}",

String.Join(";", ex.Flatten().InnerExceptions.Select(e => e.Message)));

}

public static void execute() {

}

ExecutorService executorService = Executors.newSingleThreadExecutor();
Future task = executorService.submit(Main::execute);

try {

task.get();
} catch (Exception ex) {

System.out.println("Task exception " + ex.getMessage());
}

© Vega IT Sourcing Page 56

Java for C# developers handbook

There is also a more convenient way of handling the exception using the
CompletableFuture.

Task task = Task.Factory.StartNew(Execute);
task.ContinueWith(
t => Console.WritelLine("Task {@} exceptions {1}", t.Id,
String.Join(";", t.Exception.Flatten().InnerExceptions.Select(e =>
e.Message))),

TaskContinuationOptions.OnlyOnFaulted);

CompletableFuture task = CompletableFuture.runAsync(Main::execute)
.exceptionally((e) -> {
System.out.println("Task exception” + e.getMessage());
return null;

1)

© Vega IT Sourcing Page 57

«\—%7

Persistence

Java for C# developers handbook

The closest equivalent to ADO.NET in Java would be JDBC. Usually, these days are
more likely to use a different framework that is built on top of ADO.NET and JDBC,
such as Entity Framework/NPoco in C# or JPA/Hibernate in Java.

using (SqlConnection connection = new SqlConnection(@"Data Source=.;Initial
Catalog=VegalT;Integrated Security=True"))
using (SqlCommand command = new SqlCommand("SELECT Name FROM Project", connection))

{

connection.Open();

using (SqlDataReader reader = command.ExecuteReader())

{
while (reader.Read())

{
Console.WriteLine("Name: {0}.", reader.GetString(9));

}
}
}

try (Connection connection =
DriverManager.getConnection("jdbc:sqlserver://localhost:1433;database=VegalIT;integr
atedSecurity=true");

Statement statement = connection.createStatement();) {

resultSet = statement.executeQuery("SELECT Name FROM Project");

while (resultSet.next()) {
System.out.println("Name: " + resultSet.getString(1));
}

The provided example requires the Microsoft IDBC Driver for SQL Server package,
which can be obtained from the official Microsoft site using the following link. An
alternative is to obtain it from the Maven central repository. More on Maven and how
to obtain artifacts can be found in the next chapter NuGet.

© Vega IT Sourcing Page 58

http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=11774
https://search.maven.org/search?q=g:com.microsoft.sqlserver

NuGet

NuGet can be seen as a subset of the Apache Maven, where Maven is a complete
build tool that provides a lot more than package management. Maven is designed to
work independently from an IDE and can support different languages and platforms.
Other tools can be used for dependency management, such as Gradle and Ivy.

Java for C# developers handbook

nuget.org is the central repository for .NET, and its equivalent in Java is
mvnrepository.com.

Every NuGet package is uniquely identified by its id (e.g. Newtonsoft.Json) and
version (e.g.12.0.3), whereas in Java dependency is uniquely identified by its groupl/d
(e.g. org.springframework), artifact/d (e.g. spring-core) and version (e.g. 5.2.5).

© Vega IT Sourcing Page 59

7

Java for C# developers handbook

Inversion of Control Container

There are several loC containers available for Java, and the most used one is Spring.
There will be on comparison with any container available for C#.

To use Spring as the container, it is necessary to reference the Spring Context (i.e., an
artifact from the Maven repository). More on artifacts and how they can be obtained
can be found in the NuGCet chapter.

Examples will cover the auto wiring approach, where XML configuration will not be
covered. Components in Spring are referred to as beans.

package com.vegait.java.sandbox;

public interface TypeResolverService {

}

@Service
public class TypeResolverServiceImpl implements TypeResolverService {

}

@Configuration
@ComponentScan({"com.vegait"})
public class AppConfig {

}

AnnotationConfigApplicationContext applicationContext = new
AnnotationConfigApplicationContext (AppConfig.class);

TypeResolverService typeResolverService =
applicationContext.getBean(TypeResolverService.class);

Configuration in this example automatically scans for annotated services and
register them based on the interfaces that are implemented. Any attempt to resolve
a bean, based on the TypeResolverService interface will result in returning a new
instance of the TypeResolverServicelmpl class.

© Vega IT Sourcing Page 60

7

Java for C# developers handbook

The following example extends TypeResolverServicelmpl with ParameterService
class, which instance is explicitly registered.

public class ParametersService {

}

@Service
@Scope(ConfigurableBeanFactory.SCOPE_SINGLETON)
public class TypeResolverServiceImpl implements TypeResolverService {

public TypeResolverServiceImpl(ParametersService parametersService) {

}
}

ParametersService parametersService = new ParametersService();

GenericBeanDefinition bd = new GenericBeanDefinition();
bd.setBeanClass(ParametersService.class);
bd.setInstanceSupplier(() -> parametersService);

DefaultListableBeanFactory beanFactory = new DefaultlListableBeanFactory();
beanFactory.registerBeanDefinition("parametersService", bd);

AnnotationConfigApplicationContext applicationContext = new
AnnotationConfigApplicationContext(beanFactory);
applicationContext.register(AppConfig.class);
applicationContext.refresh();

There are many other ways and options in Spring how beans can be registered and
resolved, more on that can be read on the official site.

© Vega IT Sourcing Page 61

http://spring.io/projects/spring-framework

7

Unit Testing

Java for C# developers handbook

Java does not have a built-in unit test framework like .NET has (MSTest). To write unit
tests, an external framework has to be installed. The most popular and frequently
used is JUnit.

import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertNull;

public class TypeResolverShould {
@Test
public void resolve_StringType() {
UUID typeId = UUID.fromString("C11E3901-2A1C-4091-BCBE-049C74B5C9BB");
TypeInfo actualType = TypeResolver.resolve(typeld);

String value = "Test";
Class expectedType = value.getClass();

assertEquals(expectedType, actualType.getType());

Web

The closest match of ASP.NET MVC in Java would be Java EE 8 MVC. These days it is
more popular to use a third part web framework such as Spring MVC.

Web Service

In Java, JAX-WS is used for building XML/SOAP web services that must support WS-*
standards. Other third party libraries can be used, such as Spring, which also
supports the building of REST-based services.

© Vega IT Sourcing Page 62

